Instrukcja obsługi programu do obliczeń p_n

Do uruchomienia programu wymagane jest zainstalowanie wirtualnej maszyny JAVA (oprogramowanie dostępne jest pod adresem: https://www.oracle.com/java/technologies/downloads/

W pierwszych rubrykach wpisujemy D, znak "+" lub "-" i grupę, a następnie dane dla programu obliczeniowego t, a, n oraz v₂ lub y. W programach obliczających p_n dla v₂ lub y wartość n to 0. Jeżeli chcemy znać wartości p_n wyższe niż p₇ to suwak pozwala na odczytanie tych wartości do p₃₀. Możemy też zmieniać wartości t i a dla tego samego D i obserwować jak zmieniają się wartości p_n. Najmniejsze możliwe wartości p_n otrzymujemy kiedy t≥a.

$D = t^2 \pm a$ obliczanie p_n dla v_2	
D 964 = 31 ² + 3 znak + grupa	v_2 4574225 v_2
t 31 a 3	$n 0 p_0 221161 p_0' p_0''$
ν ₂ 4574225	+ -
	$p_{1} = av_{2} - 2tp_{0} \ 10693$
$ \bigcirc p_0^2 + 2tv_2p_0 - (av_2^2 + 4) = 0 + 4 \bigcirc p_0^2 - 2tv_2p_0 + $	
$ \bigcirc p_0^2 + 2tv_2p_0 - (av_2^2 + 2) = 0 + 2 \bigcirc p_0^2 - 2tv_2p_0 + $	
🔵 równania w programie niżej 🦳 równania w p	programie nizej $p_4 = ap_2 - 2tp_3$
$\bigcirc p_0^2 + 2tv_2p_0 - (\alpha v_2^2 - 1) = 0 -1 \bigcirc p_0^2 - 2tv_2p_0 + $	
$\bigcirc p_0^2 + 2tv_2p_0 - (av_2^2 - 2) = 0 -2 \bigcirc p_0^2 - 2tv_2p_0 + $	
$ p_0^2 + 2tv_2p_0 - (av_2^2 - 4) = 0 -4 \bigcirc p_0^2 - 2tv_2p_0 + $	$(av_2 + 4) = 0 \qquad p_7 = ap_5 - 2tp_6 \ 49825$
p° 221161 uwagi	
p ₀ " -283823111	
obliczanie $p_{ extsf{n}}$	dla y
D 964 = 31 ² + 3 znak + grupa	"+1" y 324820602522300 y
t 31 a 3	n 0 p _o 15704878809949 p _o ' p _o "
y 324820602522300	+ -
+ –	$p_1 = ay - 2tp_0$ 759321350062
$ p_0^2 + 2t y p_0 - (ay^2 + 1) = 0 + 1 \qquad p_0^2 - 2t y p_0 + 0 $	$(ay^2 - 1) = 0$ $p_2 = ap_0 - 2tp_1$ 36712726003
p; 15704878809949	$p_3 = a p_1 - 2t p_2 1775038000$
p ₀ " -20154582235192549	$p_4 = a p_2 - 2t p_3 85822009$
$v_{ m 2}$ i y znamy z poprzedniego programu	$p_5 = ap_3 - 2tp_4$ 4149442
informacje o liczbie D dane do obliczeń	$p_6 = ap_4 - 2tp_5$ 200623
wyniki obliczeń	$p_7 = a p_5 - 2t p_6$ 9700
wyczyść zapisz uwagi	